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Abstract 

Maximum entropy is applied to the calculation of 
electron density maps from native and single 
isomorphous replacement (SIR) intensity data. 
Native intensity data alone at around 3 A, resolution 
are shown to be an insufficient constraint to give an 
interpretable map. When the method is applied to 
SIR data at the same resolution, either by direct 
selection between the 'most probable' phases, or by 
using both intensity data sets directly as constraints, 
the result is a significant improvement over a conven- 
tional 'best' map, as demonstrated by a calculation 
on data synthesized from a protein fragment. The 
robustness of the method is demonstrated by a series 
of calculations using increasingly noisy data. 

1. Introduction 

Recently, there has been increasing interest in apply- 
ing maximum ent1:opy in crystallography, ranging 
from the fundamental theory (Wilkins, Varghese & 
Lehmann, 1983; Livesey & Skilling, 1985) and the 
connection with direct methods (Bricogne, 1984) to 
the presentation of computational results. The latter 
have shown (e.g. Collins, 1982; Bricogne, 1984; Wei, 
1985; Wilkins & Stuart, 1986; Navaza, 1986) that if 
structure factors are supplied to, say, 3 or 4 A, then 
structure factor extension is possible (i.e. meaningful 
Fourier coefficients may be generated at reciprocal- 
lattice points beyond the resolution of the data pro- 
vided). These calculations are analogous to those of 
Gull & Daniell (1978), in which the data were Fourier 
coefficients obtained by radio interferometer observa- 
tions. However, our opinion is that if reliable multiple 
isomorphous replacement (MIR) phases are already 
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available to, say, 3 A, resolution, an electron density 
map produced by direct Fourier synthesis is usually 
interpretable. Whilst the map quality may be 
improved by structure factor extension beyond this 
figure, it is not essential for detailed model building. 
Delay in many protein structure determinations is 
frequently due to the difficulty of finding at least two 
derivatives which are sufficiently isomorphous to the 
native at 3 A, resolution. Several derivatives might be 
found which give good data to around 6 A resolution, 
but not beyond, either because the crystals diffract 
poorly, or because the structure is disturbed locally 
by the inclusion of the heavy atoms so that it becomes 
non-isomorphous at higher resolution. Many tech- 
niques have evolved to make use of partly phased 
data, such as the use of non-crystallographic sym- 
metry averaging, which has had great success in 
icosahedral virus structure determination (Harrison, 
Olson, Schutt, Winkler & Bricogne, 1978; Hogle, 
Chow & Filman, 1985; Rossmann et al., 1985), where 
there are a large number of subunit copies in the 
asymmetric unit. However, such methods cannot be 
used in the more general problem without symmetry. 
Another approach has been to combine isomorphous 
replacement and direct methods (Hauptman, 1982), 
which, like many established direct methods, requires 
the assumption of atomicity, and will almost certainly 
lose power at lower resolution. 

In previous work (Bryan, Bansal, Folkhard, Nave 
& Marvin, 1983), maximum entropy was applied to 
the calculation of the electron density of the coat 
protein of the filamentous virus Pfl from fibre diffrac- 
tion data. Data from the native structure to 4 A, reso- 
lution and a single isomorphous derivative to 5 A, 
resolution were available (Nave et al., 1981). The 
finite radius of a filamentous structure implies con- 
tinuity of the structure factors as a function of layer- 
line radius, which is not ensured if the conventional 
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crystallographic 'best' phase and figure-of-merit 
weighting are used point-by-point along a layer line. 
It is essential to select between the 'most probable' 
phases in such a way as to give continuous layer lines, 
and to select correctly between the possible phase 
choices on different layer lines. This was done by 
calculating the maximum entropy map which simul- 
taneously fitted both native and derivative data, and 
it was clearly interpretable as an a-helical structure. 
The resolution was later successfully extended to 3/~ 
by the same methods (Marvin, Bryan & Nave, 1987). 
Here we apply the same technique to crystallographic 
data with a single isomorphous derivative, and show 
results for numerical calculations on a small (20 
amino acid) protein fragment. The number of possible 
phase solutions to this problem is potentially much 
greater than in the equivalent fibre problem, as there 
is no longer any continuity constraint. We also ques- 
tion the belief that maximizing entropy subject only 
to native intensity constraints will provide a useful 
method at resolutions less than atomic. A calculation 
shows that there is not necessarily an entropy 
maximum close to the correctly phased solution. 

2. Theory 
The maximum entropy criterion involves selecting the 
map which has the greatest configurational entropy 
(i. e. least configurational information) from the 'feas- 
ible set' of maps which fit the experimental data to 
within the noise limits. This technique has been 
proved to be the unique extremum principle which 
does not introduce correlations in the map which are 
not required by the data (Shore & Johnson, 1980; 
Gull & Skilling, 1984; Livesey & Skilling, 1985). Selec- 
tion of the map with least configurational information 
confers many advantages. For example (Gull & 
Danien, 1978), there must be evidence in the data for 
any structure seen in the reconstruction. Noise is 
automatically suppressed, as are artifacts, such as 
ringing due to incomplete coverage of reciprocal 
space by the data. 

We start by defining the 'feasible set' of maps as 
those which are consistent with the observed data. If 
the differences between the intensities calculated from 
a given trial map p and the observed intensities can 
be attributed solely to noise on the data, then we 
claim that our trial map agrees with the data, and is 
thus a 'feasible' map. If isomorphous replacement or 
anomalous difference data are also available, then, 
assuming that the positions of the heavy atoms have 
already been established, the calculated derivative 
intensities can similarly be compared with the 
observations. It is not necessary to go via the inter- 
mediate step of explicitly calculating the phase proba- 
bility distribution for each structure factor. The usual 
comparison measure, already used for many types of 
data, is the logarithm of the likelihood, giving the X 2 

test (Abels, 1974; Gull & Daniell, 1978). If one 
assumes uncorrelated noise of known variance, the 
appropriate form for crystallographic data is 

X2(p; I", I d', F p) = ~ { wg(IFhl =- i~,)2 (la) 

wg,(IFh÷Hg, (lb) 
i 

) 
+ w lFh- Fgl2 , (1 e) 

where I~, are the observed native intensities, I~, are 
the observed intensities for the ith derivative, weigh- 
ted by w~, and w~, (usually inverse variances) respec- 
tively, the Fh are the structure factors calculated from 
a trial map p, H~, are the transforms of the heavy- 
atom contribution to the ith derivative, and the F~ 
phased data, included to take account of reflections 
which can be phased reliably by conventional isomor- 
phous replacement, such as centrics when a single 
isomorphous derivative is used. 

A statistic comparing the calculated and measured 
amplitudes has also been suggested for the phase 
problem (Gull & Daniell, 1978; Wilkins et al., 1983). 
We believe that it is preferable to define the X 2 t e s t  

on the intensities (Bryan, 1980, 1984; Bryan et al., 
1983; Livesey & Skilling, 1985; Wilkins, Steenstrup 
& Varghese, 1985), as it gives a constraint function 
which is differentiable everywhere, including the 
origin, in each complex plane, and is also a more 
natural definition since the measured data are the 
intensities. The amplitude statistic is non-differenti- 
able if any amplitude is zero, so it would be impossible 
to start the iterative algorithm from a fiat map, which 
may be desirable if the phases are not to be biased 
to those of a particular model starting map. However, 
the reconstructions obtained are unlikely to be sig- 
nificantly different if the signal-to-noise ratio is 
reasonably high, as they give the same form for small 
deviations around the position of exact fit. 

The form of constraint function we use can be 
extended to include data from further derivatives, 
simply by adding extra terms like (lb). Anomalous 
differences can be incorporated most easily by treat- 
ing the I ~+) and I ~-) measurements separately, each 
being compared with the appropriate structure factor 
plus heavy atom contribution. If the measurements 
of the Bijvoet pair are given equal weights, it is 
also possible to rearrange the equations to give a 
comparison on the average intensity plus a further 
contribution on the anomalous difference itself, 
so that IF+HI2+IH"I 2 is compared with Iav, and 
4 Im [ ( F +  H)H"*] with A/an°m. Here H is the struc- 
ture factor calculated from the sum of the normal 
and the real part of the anomalous scattering factors 
of the heavy atoms, and H" the corresponding quan- 
tity for the imaginary component of the anomalous 
scattering factors. This form enables the effect of the 
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anomalous differences to be assessed directly, but it 
is important to note that the natural data are the average 
intensities and the intensity anomalous differences, 
rather than the corresponding quantities defined on 
amplitudes, as is the usual practice. 

As in any form of statistical testing, the X 2 test 
enables one to determine whether a trial map p is an 
acceptable fit to the data at a given confidence level. 
If one assumes that the central limit theorem can be 
applied to the noise distribution (which will include 
Gaussian and Poisson noise), and that the total num- 
ber M of intensity measurements is large, the distribu- 
tion of the X 2 statistic can be approximated by an 
N(M, 2M) Gaussian, and so a trial map p which 
gives a X 2 -> M + 3.3x/--M can be rejected as incompat- 
ible with the data at 99% confidence; thus the feasible 
set is those maps that gave a X 2 value less than this. 
The member of this set having the greatest configur- 
ational entropy S, where 

S(p)=-~pjlogpj/mj, pj=pj/~p, (2) 
J 

is selected as the maximum entropy solution, m is the 
normalized prior map, which is the estimate of the 
solution before the data are considered, and p = m 
has the global unconstrained entropy maximum. If 
m lies within the feasible set, it will be the maximum 
entropy solution, which should only happen if the 
data introduce no new information. Usually, in is 
taken as the completely unbiased flat map, which will 
only lie within the feasible set if the data are so noisy 
that they convey no information whatsoever. Other- 
wise, since the entropy function is convex, any feas- 
ible maximum entropy map will lie on the surface of 
the feasible set. 

If constraint (lc) alone is used, the map and data 
are linearly related, the feasible set of maps defined 
by the X 2 test is an ellipsoidal cylinder in the space 
of all maps, and there is a unique entropy maximum. 
The topology of the feasible set if intensity constraints 
are also used is, however, more complicated. Exact 
knowledge of an intensity constrains the correspond- 
ing structure factor to lie on a circle in the complex 
plane, which will be blurred into an annulus by noise 
on the data. If native and derivative intensity con- 
straints are used, there may be disconnected regions 
of high likelihood, which when projected in the ampli- 
tude direction give the classical bimodal phase proba- 
bility distribution. Fig. l (a)  shows a contour map of 
the contribution to the likelihood, exp (-½X2), for 
one reflection with data on the intensities of the native 
and a single isomorphous derivative, stemming from 
the example in § 4. If, however, there is little phase 
information for a reflection in the SIR data, the ,,(2 
distribution will remain more nearly circularly sym- 
metric (Fig. 1 b). Thus, depending on the data, a given 
structure factor may be constrained to lie within an 
annulus or in one or two simply connected regions 

of the complex plane, or be completely uncon- 
strained. The feasible set, if data are provided for M 
reflections, is the M-dimensional product of such 
regions, extending to infinity in those directions for 
which there are no data. Use of the entropy function, 
which automatically restricts maps to the positive 
orthant pj->0, may eliminate many of the discon- 
nected regions, but may also introduce extra topologi- 
cal complications if the orthant edges intersect parts 
of the feasible set. We may thus expect to find several 
local entropy maxima when intensity constraints are 
used, corresponding to the possible phase ambiguities 
of the problem. Unfortunately, the global optimiz- 
ation problem is not yet solved, and we are unable 
to explore enough of the N-dimensional space of 
maps to discover all the local maxima, and thus be 
able to choose the global maximum. What we can do 
is to construct an iterative algorithm which is 

HKL 1 1 2. Native ampl i tude 4223 

~"" " ..i.." . C ~ - ~  " 

(a) 

HKL 2.1 13 Native ampl i tude 1232 

' . ~  

(b) 

Fig. 1. Contour maps in the complex plane of likelihood contribu- 
tion, exp (-½X2), for single reflections. H denotes the heavy 
atom contribution, B the 'best' structure factor, and P the 'most 
probable' structure factors, where the native and derivatives 
amplitudes (dotted circles) intersect in a Harker construction. 
Contour levels are 0.1, 0.3, 0.5, 0.7, 0.9. The native amplitudes 
have been normalized to the same size. (a) Bimodal phase 
distribution. (b) Phase not well defined. 
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sufficiently robust to have a good chance of reaching 
some local entropy maximum without becoming 
trapped. Which of the possible maxima (assuming 
that there is more than one) is reached will depend 
on the starting map. 

The numerical algorithm we have used to solve the 
problems described in §§ 3 and 4 has been described 
in detail in Skilling & Bryan (1984) for the case of 
convex constraints, and the extension to non-convex 
constraints in Bryan & Skilling (1986). Despite criti- 
cisms of this algorithm (Bricogne, 1984), there is no 
difficulty in employing it to find local maxima of the 
non-convex constrained problem. Indeed, the 
original motivation for the development of this 
algorithm (Bryan, 1980) was the phase problem in 
the context of radio astronomy, and it has been used 
for the solution of the SIR fibre diffraction problem 
(Bryan et al., 1983; Marvin et al., 1987). A global 
solution to the problem is much harder. One approach 
might be to construct a scheme to examine systemati- 
cally all the possible local maxima, as has been sug- 
gested by Bricogne (1984). 

3. Native intensity data 

The ideal method for electron-density calculations 
would be 'direct', using only native intensity data, 
but the numerical solution of this problem is fraught 
with the possibilities of multiple local maxima, and 
an ab initio calculation would inevitably be extremely 
computer intensive. Moreover, practical calculations 
performed previously (Bryan, 1984) indicated that 
the correctly phased solution is not necessarily at or 
near any local entropy maximum. We illustrate this 
here with an example using data for the 'blue 
protein' from Alcaligenesfaecalis, whose structure has 
been solved in this laboratory (Petratos, Banner, 
Tsemoglou & Beppu, 1987), using SIR plus 
anomalous differences. This protein has a molecular 
weight of 12 000, and crystallizes in space group P65, 
a = b = 50, c = 98.5 A, with one molecule per asym- 
metric unit. 

A maximum entropy map was calculated using the 
experimentally derived structure factors to 2.9 ~ res- 
olution (average FOM 80%) as a constraint of type 
(lc). An atomic model had already been built into 
this density, indicating that the phases must have 
been reasonably close to the 'true' phases. Qualita- 
tively the maximum entropy map (Fig. 2a) was very 
similar to the usual 'best' map, but with the density 
standing out with greater contrast against a more 
uniform background. This calculation was equivalent 
to those cited in § 1. 

A second maximum-entropy map was calculated, 
using the first as the starting map, but now ignoring 
the experimental phases by using only native 
intensities in the constraint function ( la) .  We would 
expect that if there were a local maximum of entropy 

for this problem close to the map produced using the 
constraint with phases, it would be found by this 
computation. However, the resulting map (Fig. 2b) 
had an average amplitude-weighted phase change, 

/ 

Y~ IFhll~o~e-~o~rl/y~ IFh], (3) 
h / h  

of 37"6 ° from the original phases, and the entropy 
had risen from -1-6749 to -0-8817. The density itself 
had become rather broken, and chain-tracing was no 
longer possible. Although only a single counter- 
example, it casts doubt on whether an interpretable 
density can be derived in general from native intensity 
data only at this resolution. Navaza (1986) has also 
noted that a maximum-entropy map constrained by 
native intensities only was uninterpretable in terms 
of molecular structures, although he does not define 
the starting map for his calculation. 

Jaynes (1968, 1982) points out that if the entropy 
of an observed distribution is significantly less (in a 
sense that he makes precise) than that of the 

•0• (a ~ /  ) 

o < °  

Fig. 2. Single sections of blue protein density from (a) IR structure 
factors and maximum entropy, (b) native intensities, starting 
from map (A). Contour levels are the same in both plots, at 10, 
20%,... of the overall maximum. 
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maximum entropy distribution calculated according 
to a given hypothesis, then there is evidence that 
systematic influences, other than those incorporated 
into the hypothesis, are constraining the observed 
system. Let us take as the 'observed distribution' the 
maximum entropy density found using the experi- 
mental structure factors. This density must have a 
greater entropy than that of the 'true' density, as, say, 
using additional higher-resolution data will add con- 
straints to the system, and thus reduce the entropy, 
or possibly leave it unchanged if the new constraints 
are redundant. For the theoretical distribution, we 
take the density produced using native intensity data; 
our hypothesis is effectively that intensity constraints 
are sufficient for us to deduce all the structure in the 
system at this resolution, and that the phases contain 
no additional information. The entropy values calcu- 
lated above convincingly demonstrate otherwise. 
Indeed, we already believe strongly from other 
evidence, but are unable to deduce directly from the 
diffraction data to hand, that the structure is made 
of atoms, arranged into molecules with specific 
stereochemistry, causing systematic departures from 
the uniform density that is assumed for the prior in 
this application of maximum entropy. It is this belief 
that would inevitably cause a map such as Fig. 2(b) 
to be rejected as a possible solution for the crystal 
structure. 

Ideally, our method of solution should give only 
densities which could be produced by atomic struc- 
tures with correct stereochemistry. Information such 
as allowable bond lengths and angles, and, at a larger 
scale, of secondary and tertiary structures, should be 
used if possible. Although the entropy expression (2) 
provides a way of incorporating prior information 
via m, direct modification of m would imply that the 
absolute positions of the features were known, and 
hence also the phases. However, our stereochemical 
information is really in terms of spatial correlation 
of density, and not the density itself. Some pre- 
liminary work to incorporate density correlations into 
a prior map has been performed (Skilling, 1986; 
Bryan, 1986), but it has not yet reached the stage 
when it can encode information at the complexity of 
molecular structures. Therefore, given these consider- 
ations, and the numerical results described above, we 
consider that the ab initio problem using only native 
intensity constraints at around 3 A resolution is per- 
haps not the most useful one to approach at present. 

An alternative way of introducing further con- 
straints is of course to use more data pertaining to 
the phases. In the limiting case these would be the 
MIR phases, and the problem will have a unique 
solution. Here, we approach an intermediate prob- 
lem, the use of single isomorphous replacement data, 
and investigate whether the use of maximum entropy 
is an improvement over straightforward Fourier 
methods. 

4. Single isomorphous replacement data 

Whilst in some circumstances a conventional figure- 
of-merit weighted SIR Fourier map (Blow & Ross- 
mann, 1961) may be interpretable, this is not always 
the case. In general, SIR data give a choice of two 
possible phases for each structure factor, the two 
'most probable' phases. The classical way of using 
such data is to compute the 'best' map, which is a 
Fourier synthesis from the average of the two possible 
structure factors. Thus neither the phases nor the 
amplitudes of the computed map are correct. This 
map is 'best' only in the sense that it minimizes the 
sum of the squared differences from both the possible 
phase solutions. Instead, we shall attempt to select 
between the possible 'most probable' phases, so that 
our map will at least agree with the data. The number 
of acceptable 'most probable' maps will be consider- 
ably reduced by positivity alone, although it will 
probably not resolve the ambiguity in phase of weaker 
reflections in particular, where an incorrect phase 
choice would not cause this criterion to be violated. 

We have investigated two approaches to this prob- 
lem: firstly, an attempt to solve the finite (although 
very large !) problem of finding which of the 2 M poss- 
ible phase solutions maximizes the entropy, and, 
secondly, the use of native and derivative data directly 
in the X 2 statistic as defined above. 

Method 1. For each reflection, the two 'most prob- 
able' phases were calculated and one chosen 
arbitrarily. With this set of structure factors as a 
phased data constraint (1 c), a maximum entropy map 
was calculated. The entropy was naturally very low, 
since a random selection of 'most probable' phases 
will not in general give a positive structure, and con- 
sequently many points had densities approaching 
zero. The residuals, vC-w[F me- FP], for each structure 
factor were examined, where U p now represents the 
current choice of 'most probable' structure factor. If 
the residual was greater than the residual would have 
been for the other phase choice, the structure factor 
in the data set was replaced by the other choice. Such 
a procedure must lead to a map with a larger entropy 
when the fit to the data is equally good. Next, the 
structure factor with the largest residual was 
exchanged for the other phase choice, and a new 
maximum entropy map calculated. If this showed an 
increase in entropy compared with the previous map, 
another reflection was similarly exchanged. Other- 
wise, it was changed back, the one with the next- 
largest residual tried, and the process repeated itera- 
tively. Clearly, with a large number of reflections, this 
process might be extremely lengthy. The effect is to 
examine a subset of all the possible phase solutions 
in a controlled way. The advantage of this method 
lies in the convexity of the constraint function for 
each particular choice of phases, so that each 
individual maximization problem has a unique sol- 
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• ution, and a fast and reliable numerical algorithm 
can be used. Nevertheless, because of the many sub- 
problems that must be solved, the total computer time 
required turns out to be comparable to method (2). 
A further disadvantage is that the error model 
is isotropic ( i . e .  the variances in the amplitude and 
phase directions are equal), which is also the case for 
Wilkins & Stuart (1986). Their estimate of variance 
depends on the reliability of the phase, but is then 
applied .~sotropically. Thus information in accurately 
known amplitudes may be lost because the phasing 
is inaccurate. 

M e t h o d  2. The native and derivative data sets were 
used together as constraints - the intensities of the 
transform of the trial electron density were compared 
with the native data, and the intensities of the map 
transform plus heavy-atom contribution with the 
derivative data set, using terms ( la )  and ( lb)  in X 2, 
as was done for the SIR fibre problem (Bryan e t  a l . ,  

1983). For a given reflection, the net effect is to give 
a good fit to the data only if the calculated structure 
factor is near either of the classical 'most probable' 
values, as discussed in § 2. Since this problem exhibits 
the full complexity of optimization with non-convex 
constraints, it takes much more computer time to 
solve than a similar-sized convex problem. The single 
derivative is sufficient to phase the centrosymmetric 
reflections, which are therefore incorporated in the 
phased term (1 c), except that those with a low figure 
of merit, below 0.75, are ignored. 

We describe here a calculation using simulated 
data. We obtained a representative piece of protein 
by extracting a fragment of 20 amino acids (160 
non-hydrogen atoms) forming an a-/3 motif from 
triose phosphate isomerase (Banner, Bloomer, 
Petsko, Phillips & Wilson, 1976), placed it in the 
asymmetric unit of a P2~ 2121 unit cell, a = b = 24, 
e = 64/~, and calculated the structure factors to 3 A 
resolution. Part of the density synthesized from these 
structure factors is shown in Fig. 3. A derivative data 
set was simulated by adding the structure factors of 
a single zinc atom per asymmetric unit to the native 
structure factors, giving a heavy-atom contribution 
of about the same size as that expected from a reftl 
heavy atom in a medium-sized protein, e . g .  one mer- 
cury atom in a protein of molecular weight 16 000, 
using the formula of Crick & Magdoff (1956). The 
data used in the following calculations were the 
intensities of these two sets of structure factors. The 
heavy-atom parameters were refined in order to emu- 
late the real situation where these parameters are 
estimated initially from a difference Patterson map. 
A conventional SIR 'best map' synthesized from these 
data is shown in Fig. 4 (map A). The average figure 
of merit for all reflections, including centrics, was 
68%, and for the acentrics the average amplitude- 
weighted phase difference between the original simu- 

lated phases and the 'best' phases was 43 °. Use of 
these 'best' SIR structure factors as a constraint in a 
maximum entropy calculation would be inappropri- 
ate; they do not necessarily correspond to a positive 
structure. 

Application of the two algorithms described above 
gave the results displayed in Figs. 5 and 6 (maps B 
and C). The heavy atom structure factors used were 
the same as in the SIR synthesis. Table 1 describes 

= "..3 , 

• -:, .°.... ..-°'"-. 

' ............. ::: 

z= 10 " /  ~ ' ~  

Fig. 3. Density calculated from model protein fragment. Contour 
map of four successive sections at 1/~ intervals in z. This, and 
all subsequent contour maps, have the same contour intervals. 
The zero contour is suppressed, and negative contours dashed. 
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Fig. 4. Density from SIR data by classical 'best' method (map A). 
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Table 1. Phase changes of acentric reflections resulting from the various calculations described in § 4 

The en t ropy  values (where  app rop r i a t e )  and  average  ampl i t ude  phase  change  in degrees  [equat ion  (3)] f rom the synthesized nat ive 
s tructure factors  are given, bo th  overall ,  and  in equal  [(sin 0) / ; t  ]2 ranges.  The  co lumns  refer  to the maps  as fol lows: A F O M  weighted 
Four ier  synthesis;  B me thod  1; C - H  method  2; C start  fiat; D start  A with negat ives  deleted;  E start  B; F as C, but  5% noise; G as 
F, but  20% noise;  H as F, but  40% noise. 

S 

Ampl i tude  weighted  phase  change  (°) 

Average 

A B C D E F G H 

- -  -8"215 -6.667 -6"668 -6"903 -6"620 -5"623 -3.791 

42-98 20.00 8.51 8.67 11.80 9.31 13.27 35.56 

N u m b e r  
o f  

In resolut ion range  reflections 

oo 11.18 4 60.12 1.15 4.45 
11.18 7.91 15 39-26 4.77 3-26 
7.91 J 6.45 24 35.49 7.13 3.56 
6-45 5.59 26 40-56 8.47 3.69 
5-59 5-00 34 46.93 7.62 3.96 
5.00 4.56 39 45.33 17.26 4.88 
4.56 4.23 40 41.73 14.65 5-63 
4-23 3.95 43 33-60 12-66 8-61 
3.95 3.73 54 41.88 22.92 9-44 
3.73 3.54 58 40-63 28.59 10- 80 
3-54 3-37 48 42.47 31.60 9.85 
3.37 3-23 64 47.84 27.75 10.37 
3.23 3.10 57 50.65 30.27 15.19 
3.10 3.00 53 47.38 36.93 17.60 

4-62 2"09 2"83 9"29 12-99 
3-42 4.18 3"23 3"80 20-83 
3"70 4-15 3 "61 4.56 19"79 
3-54 4"63 3-95 5"22 30.67 
3"93 5"06 4"22 6"59 28"68 
4"89 6"58 5"20 7-33 35"68 
5"56 8"74 6-52 8"86 32"47 
8"74 9"32 9"42 14"43 36"88 

10"58 10" 16 11-21 13"79 40.53 
10"84 15"64 11-18 14"09 41-16 
9.78 20-45 9"99 14"56 35-95 

10-44 15"86 11"68 16"85 36"84 
15"56 20"64 17"88 28-50 49"23 
17"63 24-01 18"47 27.41 43-58 

the phase differences from the simulated structure 
factors. The average phase error increases with reso- 
lution, but this could be expected, as it gives about 
the same positional accuracy at all resolutions. 

There is a practical limit to the first method; even- 
tually the distribution of residuals agrees with the 
expected distribution, and it is no longer possible to 
distinguish outliers as candidates for phase exchange, 
i.e. it is just as likely that a large residual is due to a 
genuine bad fit to a correctly phased datum as to one 
incorrectly phased. About a quarter of the total num- 

ber of reflections, mostly small and medium sized, 
remained at the incorrect phase choice. Since all 
reflections contribute with full amplitude, these have 
a fairly adverse affect on the map, leading to sig- 
nificant artifacts, whereas in conventional figure-of- 
merit weighted maps the imprecisely phased reflec- 
tions are reduced in amplitude. Furthermore, since 
fhe heavy atom model had been refined, and thus 
some heavy atom structure factors differed sig- 
nificantly from the true ones, some reflections were 
badly phased - neither 'most probable'  phase was 

. 

Fig. 5. Densi ty  f rom S I R  data  by method  I ( m a p  B). 

z = ~ "  

0 

° 

Z= 10 

Fig. 6. Densi ty  f rom SIR data  by method  2 ( m a p  C) .  
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near the true one. Even in a conventional SIR syn- 
thesis, the figure of merit of such reflections may be 
large. Phases of reflections which were imprecisely 
phased, perhaps because of a small heavy atom 
contribution, may also be far from their true values, 
yet the constraint is as strong as for well phased 
reflections. 

The second method, with a better probabilistic 
model of the errors in the data, does not suffer from 
this disadvantage. If the phasedeterminat ion  is 
imprecise, the constraint is effective on amplitude 
only. If precise, then good fits to the data will be 
found only near the classical 'most probable' phases. 
The result is a map showing all the correct features 
and no artifacts, and indeed, owing to the constraint 
of positivity, shows a sharper structure than the 
original 3 A Fourier synthesis, because of a reduction 
in series termination effects. Since the average ampli- 
tude weighted phase change from the original calcu- 
lated structure factors was only 8.5 ° , it is clear that 
the phasing is considerably improved over the con- 
ventional 'best' map, and that most of the strong 
reflections must be correctly phased. 

The main disadvantage is that uniqueness of the 
solution is not ensured. Without a multisolution 
algorithm, not all local maxima can necessarily be 
explored. However, we have used several different 
starting densities, including the flat map, a conven- 
tional SIR map with negatives deleted, and the map 
resulting from method 1, and the resulting densities 
(maps C, D, E, Table 1) were visually essentially iden- 
tical, although differing in the exact phasing of weak 
reflections. The largest average amplitude weighted 
phase change from the original calculated structure 
factors obtained was less than 12 ° . An examination 
of all possible local entropy maxima would not 
change the structural interpretation of the map. 

Perhaps an optimal scheme would be to use the 
two methods successively, since the first can, in com- 
paratively few iterations, produce a map whose trans- 
form has most of the stronger reflections correctly 
phased. The resultant map may be used (i) either 
directly as a starting map, or (ii) as a prior map m, 
in further refinement by method (2). The first method 
could also be developed further, perhaps by changing 
the phasing of groups of reflections simultaneously, 
rather than singly, and thus be speeded up 
considerably. 

The above calculations were all performed using 
noise-free data, although the value of X 2 required was 
appropriate for a noise level of about 1% of the 
average amplitude. To test the robustness with respect 
to noise, the calculation using method (2) was 
repeated, but with Gaussian random noise of stan- 
dard deviation 5% of the average amplitude added 
to the simulated amplitudes (giving a variance on the 
intensities roughly proportional to the intensity; a 
few of the largest amplitudes reach about ten times 

the average). Two different starting maps were used: 
the flat map, and the map produced by the original 
calculation. The resulting maps were virtually iden- 
tical, and very similar to the map calculated from 
noise-free data, although displaying a slight drop in 
sharpness and an increase in entropy (F, Table 1), as 
would be expected. Increasing the noise successively 
to 20 and 40% accentuated these effects, with phase 
errors increasing (G and H, Table 1) and features 
beginning to fade out, but still with low noise in the 
final map (Fig. 7). Eventually, with noise of 150% of 
the average amplitude, the X 2 for the fiat map becomes 
less than M, the number of observations, showing 
that no information can be extracted from these data 
by using the X 2 test, despite the fact that the largest 
intensities are still at the 4-5 standard deviation level. 

The constraint functions we have introduced can 
clearly be used with any number and quality of deriva- 
tive data sets. If some reflections are judged to be 
reliably phased by conventional MIR phasing, per- 
haps low resolution ones if there are several deriva- 
tives good to low resolution, the MIR phase can be 
used to give a structure factor constrairit (lc).  It is a 
waste of computer time to put in all the intensity data 
as constraints (1 a) and (1 b) in this case. Less reliably 
phased reflections can still be constrained by the 
intensities of the native and whatever derivatives pro- 
vide data. The heavy atom parameters can also be 
refined at any stage, simply by minimizing X 2 with 
respect to them, keeping the current protein structure 
factors fixed, as was done for the Pfl refinement. 
Derivative scale factors can be refined similarly, to 
give a closed form solution since X 2 is quadratic in 
the scale factors. We foresee no difficulty, apart from 

Z=9 Z= I0 ~~ 

Fig. 7. Density from SIR data with added noise of 40% of average 
amplitude, by method 2 (map H). 
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greater  computa t iona l  time, in applying this method  
to larger structures than illustrated here. 
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Abstract 

The generat ion of  possible twin laws for (pseudo-)-  
merohedry  by left coset decomposi t ion of  the point  
symmetry of  the crystal lattice (metric symmetry)  with 
respect to the crystal point group is presented. Two 
algori thms for the generat ion of  the system of  rep- 
resentatives have been devised. The first produces  
twin laws in the form of  pure rotations of  180 ° 
wherever  possible, and the second associates 
operat ions in pairs related by a centre of  symmetry  
for crystals lacking an inversion centre. The metric 
symmetry  should be determined by means  of  cell 
reduction f rom the measured  cell dimensions and the 
crystal point  group derived from the assumed space 
group. The automat ic  generat ion of  twinning 
operat ions by this algori thm greatly facilitates the 

testing of  twinning and orientat ion ambiguit ies by 
way of  least-squares refinement of  the twin fractions. 

Introduction 

Twinning by (pseudo-)merohedry results in the exact 
superposi t ion of  the reciprocal lattices of  the twin 
components  and hence leads to the modificat ion of  
the intensities of  Bragg reflections. The automat ic  
t reatment  of  (pseudo- )merohedry  should hence be an 
essential component  of  any modern  computer  system 
under taking structure solution and refinement. Even 
for the t rea tment  of  untwinned single crystals, a 
knowledge of  the possible twin laws by (pseudo-)-  
merohedry  can be crucial, as these represent  the 
alternative orientat ions of  the crystal structure with 
respect to its own lattice. 
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